1
0
mirror of https://github.com/musix-org/musix-oss synced 2025-06-17 04:26:00 +00:00
This commit is contained in:
MatteZ02
2020-03-04 13:43:21 +02:00
parent 79f8a18164
commit da84fcfed1
1292 changed files with 93623 additions and 35760 deletions

37
node_modules/are-we-there-yet/CHANGES.md generated vendored Normal file
View File

@ -0,0 +1,37 @@
Hi, figured we could actually use a changelog now:
## 1.1.5 2018-05-24
* [#92](https://github.com/iarna/are-we-there-yet/pull/92) Fix bug where
`finish` would throw errors when including `TrackerStream` objects in
`TrackerGroup` collections. (@brianloveswords)
## 1.1.4 2017-04-21
* Fix typo in package.json
## 1.1.3 2017-04-21
* Improve documentation and limit files included in the distribution.
## 1.1.2 2016-03-15
* Add tracker group cycle detection and tests for it
## 1.1.1 2016-01-29
* Fix a typo in stream completion tracker
## 1.1.0 2016-01-29
* Rewrote completion percent computation to be low impact no more walking a
tree of completion groups every time we need this info. Previously, with
medium sized tree of completion groups, even a relatively modest number of
calls to the top level `completed()` method would result in absurd numbers
of calls overall as it walked down the tree. We now, instead, keep track as
we bubble up changes, so the computation is limited to when data changes and
to the depth of that one branch, instead of _every_ node. (Plus, we were already
incurring _this_ cost, since we already bubbled out changes.)
* Moved different tracker types out to their own files.
* Made tests test for TOO MANY events too.
* Standarized the source code formatting

5
node_modules/are-we-there-yet/LICENSE generated vendored Normal file
View File

@ -0,0 +1,5 @@
Copyright (c) 2015, Rebecca Turner
Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

195
node_modules/are-we-there-yet/README.md generated vendored Normal file
View File

@ -0,0 +1,195 @@
are-we-there-yet
----------------
Track complex hiearchies of asynchronous task completion statuses. This is
intended to give you a way of recording and reporting the progress of the big
recursive fan-out and gather type workflows that are so common in async.
What you do with this completion data is up to you, but the most common use case is to
feed it to one of the many progress bar modules.
Most progress bar modules include a rudamentary version of this, but my
needs were more complex.
Usage
=====
```javascript
var TrackerGroup = require("are-we-there-yet").TrackerGroup
var top = new TrackerGroup("program")
var single = top.newItem("one thing", 100)
single.completeWork(20)
console.log(top.completed()) // 0.2
fs.stat("file", function(er, stat) {
if (er) throw er
var stream = top.newStream("file", stat.size)
console.log(top.completed()) // now 0.1 as single is 50% of the job and is 20% complete
// and 50% * 20% == 10%
fs.createReadStream("file").pipe(stream).on("data", function (chunk) {
// do stuff with chunk
})
top.on("change", function (name) {
// called each time a chunk is read from "file"
// top.completed() will start at 0.1 and fill up to 0.6 as the file is read
})
})
```
Shared Methods
==============
* var completed = tracker.completed()
Implemented in: `Tracker`, `TrackerGroup`, `TrackerStream`
Returns the ratio of completed work to work to be done. Range of 0 to 1.
* tracker.finish()
Implemented in: `Tracker`, `TrackerGroup`
Marks the tracker as completed. With a TrackerGroup this marks all of its
components as completed.
Marks all of the components of this tracker as finished, which in turn means
that `tracker.completed()` for this will now be 1.
This will result in one or more `change` events being emitted.
Events
======
All tracker objects emit `change` events with the following arguments:
```
function (name, completed, tracker)
```
`name` is the name of the tracker that originally emitted the event,
or if it didn't have one, the first containing tracker group that had one.
`completed` is the percent complete (as returned by `tracker.completed()` method).
`tracker` is the tracker object that you are listening for events on.
TrackerGroup
============
* var tracker = new TrackerGroup(**name**)
* **name** *(optional)* - The name of this tracker group, used in change
notifications if the component updating didn't have a name. Defaults to undefined.
Creates a new empty tracker aggregation group. These are trackers whose
completion status is determined by the completion status of other trackers.
* tracker.addUnit(**otherTracker**, **weight**)
* **otherTracker** - Any of the other are-we-there-yet tracker objects
* **weight** *(optional)* - The weight to give the tracker, defaults to 1.
Adds the **otherTracker** to this aggregation group. The weight determines
how long you expect this tracker to take to complete in proportion to other
units. So for instance, if you add one tracker with a weight of 1 and
another with a weight of 2, you're saying the second will take twice as long
to complete as the first. As such, the first will account for 33% of the
completion of this tracker and the second will account for the other 67%.
Returns **otherTracker**.
* var subGroup = tracker.newGroup(**name**, **weight**)
The above is exactly equivalent to:
```javascript
var subGroup = tracker.addUnit(new TrackerGroup(name), weight)
```
* var subItem = tracker.newItem(**name**, **todo**, **weight**)
The above is exactly equivalent to:
```javascript
var subItem = tracker.addUnit(new Tracker(name, todo), weight)
```
* var subStream = tracker.newStream(**name**, **todo**, **weight**)
The above is exactly equivalent to:
```javascript
var subStream = tracker.addUnit(new TrackerStream(name, todo), weight)
```
* console.log( tracker.debug() )
Returns a tree showing the completion of this tracker group and all of its
children, including recursively entering all of the children.
Tracker
=======
* var tracker = new Tracker(**name**, **todo**)
* **name** *(optional)* The name of this counter to report in change
events. Defaults to undefined.
* **todo** *(optional)* The amount of work todo (a number). Defaults to 0.
Ordinarily these are constructed as a part of a tracker group (via
`newItem`).
* var completed = tracker.completed()
Returns the ratio of completed work to work to be done. Range of 0 to 1. If
total work to be done is 0 then it will return 0.
* tracker.addWork(**todo**)
* **todo** A number to add to the amount of work to be done.
Increases the amount of work to be done, thus decreasing the completion
percentage. Triggers a `change` event.
* tracker.completeWork(**completed**)
* **completed** A number to add to the work complete
Increase the amount of work complete, thus increasing the completion percentage.
Will never increase the work completed past the amount of work todo. That is,
percentages > 100% are not allowed. Triggers a `change` event.
* tracker.finish()
Marks this tracker as finished, tracker.completed() will now be 1. Triggers
a `change` event.
TrackerStream
=============
* var tracker = new TrackerStream(**name**, **size**, **options**)
* **name** *(optional)* The name of this counter to report in change
events. Defaults to undefined.
* **size** *(optional)* The number of bytes being sent through this stream.
* **options** *(optional)* A hash of stream options
The tracker stream object is a pass through stream that updates an internal
tracker object each time a block passes through. It's intended to track
downloads, file extraction and other related activities. You use it by piping
your data source into it and then using it as your data source.
If your data has a length attribute then that's used as the amount of work
completed when the chunk is passed through. If it does not (eg, object
streams) then each chunk counts as completing 1 unit of work, so your size
should be the total number of objects being streamed.
* tracker.addWork(**todo**)
* **todo** Increase the expected overall size by **todo** bytes.
Increases the amount of work to be done, thus decreasing the completion
percentage. Triggers a `change` event.

4
node_modules/are-we-there-yet/index.js generated vendored Normal file
View File

@ -0,0 +1,4 @@
'use strict'
exports.TrackerGroup = require('./tracker-group.js')
exports.Tracker = require('./tracker.js')
exports.TrackerStream = require('./tracker-stream.js')

View File

@ -0,0 +1 @@
node_modules

View File

@ -0,0 +1,4 @@
language: node_js
node_js:
- "0.8"
- "0.10"

View File

@ -0,0 +1,6 @@
test:
@node_modules/.bin/tape test.js
.PHONY: test

View File

@ -0,0 +1,60 @@
# isarray
`Array#isArray` for older browsers.
[![build status](https://secure.travis-ci.org/juliangruber/isarray.svg)](http://travis-ci.org/juliangruber/isarray)
[![downloads](https://img.shields.io/npm/dm/isarray.svg)](https://www.npmjs.org/package/isarray)
[![browser support](https://ci.testling.com/juliangruber/isarray.png)
](https://ci.testling.com/juliangruber/isarray)
## Usage
```js
var isArray = require('isarray');
console.log(isArray([])); // => true
console.log(isArray({})); // => false
```
## Installation
With [npm](http://npmjs.org) do
```bash
$ npm install isarray
```
Then bundle for the browser with
[browserify](https://github.com/substack/browserify).
With [component](http://component.io) do
```bash
$ component install juliangruber/isarray
```
## License
(MIT)
Copyright (c) 2013 Julian Gruber <julian@juliangruber.com>
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,19 @@
{
"name" : "isarray",
"description" : "Array#isArray for older browsers",
"version" : "0.0.1",
"repository" : "juliangruber/isarray",
"homepage": "https://github.com/juliangruber/isarray",
"main" : "index.js",
"scripts" : [
"index.js"
],
"dependencies" : {},
"keywords": ["browser","isarray","array"],
"author": {
"name": "Julian Gruber",
"email": "mail@juliangruber.com",
"url": "http://juliangruber.com"
},
"license": "MIT"
}

View File

@ -0,0 +1,5 @@
var toString = {}.toString;
module.exports = Array.isArray || function (arr) {
return toString.call(arr) == '[object Array]';
};

View File

@ -0,0 +1,73 @@
{
"_from": "isarray@~1.0.0",
"_id": "isarray@1.0.0",
"_inBundle": false,
"_integrity": "sha1-u5NdSFgsuhaMBoNJV6VKPgcSTxE=",
"_location": "/are-we-there-yet/isarray",
"_phantomChildren": {},
"_requested": {
"type": "range",
"registry": true,
"raw": "isarray@~1.0.0",
"name": "isarray",
"escapedName": "isarray",
"rawSpec": "~1.0.0",
"saveSpec": null,
"fetchSpec": "~1.0.0"
},
"_requiredBy": [
"/are-we-there-yet/readable-stream"
],
"_resolved": "https://registry.npmjs.org/isarray/-/isarray-1.0.0.tgz",
"_shasum": "bb935d48582cba168c06834957a54a3e07124f11",
"_spec": "isarray@~1.0.0",
"_where": "C:\\Users\\matia\\Documents\\GitHub\\Musix-V3\\node_modules\\are-we-there-yet\\node_modules\\readable-stream",
"author": {
"name": "Julian Gruber",
"email": "mail@juliangruber.com",
"url": "http://juliangruber.com"
},
"bugs": {
"url": "https://github.com/juliangruber/isarray/issues"
},
"bundleDependencies": false,
"dependencies": {},
"deprecated": false,
"description": "Array#isArray for older browsers",
"devDependencies": {
"tape": "~2.13.4"
},
"homepage": "https://github.com/juliangruber/isarray",
"keywords": [
"browser",
"isarray",
"array"
],
"license": "MIT",
"main": "index.js",
"name": "isarray",
"repository": {
"type": "git",
"url": "git://github.com/juliangruber/isarray.git"
},
"scripts": {
"test": "tape test.js"
},
"testling": {
"files": "test.js",
"browsers": [
"ie/8..latest",
"firefox/17..latest",
"firefox/nightly",
"chrome/22..latest",
"chrome/canary",
"opera/12..latest",
"opera/next",
"safari/5.1..latest",
"ipad/6.0..latest",
"iphone/6.0..latest",
"android-browser/4.2..latest"
]
},
"version": "1.0.0"
}

View File

@ -0,0 +1,20 @@
var isArray = require('./');
var test = require('tape');
test('is array', function(t){
t.ok(isArray([]));
t.notOk(isArray({}));
t.notOk(isArray(null));
t.notOk(isArray(false));
var obj = {};
obj[0] = true;
t.notOk(isArray(obj));
var arr = [];
arr.foo = 'bar';
t.ok(isArray(arr));
t.end();
});

View File

@ -0,0 +1,34 @@
sudo: false
language: node_js
before_install:
- (test $NPM_LEGACY && npm install -g npm@2 && npm install -g npm@3) || true
notifications:
email: false
matrix:
fast_finish: true
include:
- node_js: '0.8'
env: NPM_LEGACY=true
- node_js: '0.10'
env: NPM_LEGACY=true
- node_js: '0.11'
env: NPM_LEGACY=true
- node_js: '0.12'
env: NPM_LEGACY=true
- node_js: 1
env: NPM_LEGACY=true
- node_js: 2
env: NPM_LEGACY=true
- node_js: 3
env: NPM_LEGACY=true
- node_js: 4
- node_js: 5
- node_js: 6
- node_js: 7
- node_js: 8
- node_js: 9
script: "npm run test"
env:
global:
- secure: rE2Vvo7vnjabYNULNyLFxOyt98BoJexDqsiOnfiD6kLYYsiQGfr/sbZkPMOFm9qfQG7pjqx+zZWZjGSswhTt+626C0t/njXqug7Yps4c3dFblzGfreQHp7wNX5TFsvrxd6dAowVasMp61sJcRnB2w8cUzoe3RAYUDHyiHktwqMc=
- secure: g9YINaKAdMatsJ28G9jCGbSaguXCyxSTy+pBO6Ch0Cf57ZLOTka3HqDj8p3nV28LUIHZ3ut5WO43CeYKwt4AUtLpBS3a0dndHdY6D83uY6b2qh5hXlrcbeQTq2cvw2y95F7hm4D1kwrgZ7ViqaKggRcEupAL69YbJnxeUDKWEdI=

View File

@ -0,0 +1,38 @@
# Developer's Certificate of Origin 1.1
By making a contribution to this project, I certify that:
* (a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or
* (b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or
* (c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.
* (d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.
## Moderation Policy
The [Node.js Moderation Policy] applies to this WG.
## Code of Conduct
The [Node.js Code of Conduct][] applies to this WG.
[Node.js Code of Conduct]:
https://github.com/nodejs/node/blob/master/CODE_OF_CONDUCT.md
[Node.js Moderation Policy]:
https://github.com/nodejs/TSC/blob/master/Moderation-Policy.md

View File

@ -0,0 +1,136 @@
### Streams Working Group
The Node.js Streams is jointly governed by a Working Group
(WG)
that is responsible for high-level guidance of the project.
The WG has final authority over this project including:
* Technical direction
* Project governance and process (including this policy)
* Contribution policy
* GitHub repository hosting
* Conduct guidelines
* Maintaining the list of additional Collaborators
For the current list of WG members, see the project
[README.md](./README.md#current-project-team-members).
### Collaborators
The readable-stream GitHub repository is
maintained by the WG and additional Collaborators who are added by the
WG on an ongoing basis.
Individuals making significant and valuable contributions are made
Collaborators and given commit-access to the project. These
individuals are identified by the WG and their addition as
Collaborators is discussed during the WG meeting.
_Note:_ If you make a significant contribution and are not considered
for commit-access log an issue or contact a WG member directly and it
will be brought up in the next WG meeting.
Modifications of the contents of the readable-stream repository are
made on
a collaborative basis. Anybody with a GitHub account may propose a
modification via pull request and it will be considered by the project
Collaborators. All pull requests must be reviewed and accepted by a
Collaborator with sufficient expertise who is able to take full
responsibility for the change. In the case of pull requests proposed
by an existing Collaborator, an additional Collaborator is required
for sign-off. Consensus should be sought if additional Collaborators
participate and there is disagreement around a particular
modification. See _Consensus Seeking Process_ below for further detail
on the consensus model used for governance.
Collaborators may opt to elevate significant or controversial
modifications, or modifications that have not found consensus to the
WG for discussion by assigning the ***WG-agenda*** tag to a pull
request or issue. The WG should serve as the final arbiter where
required.
For the current list of Collaborators, see the project
[README.md](./README.md#members).
### WG Membership
WG seats are not time-limited. There is no fixed size of the WG.
However, the expected target is between 6 and 12, to ensure adequate
coverage of important areas of expertise, balanced with the ability to
make decisions efficiently.
There is no specific set of requirements or qualifications for WG
membership beyond these rules.
The WG may add additional members to the WG by unanimous consensus.
A WG member may be removed from the WG by voluntary resignation, or by
unanimous consensus of all other WG members.
Changes to WG membership should be posted in the agenda, and may be
suggested as any other agenda item (see "WG Meetings" below).
If an addition or removal is proposed during a meeting, and the full
WG is not in attendance to participate, then the addition or removal
is added to the agenda for the subsequent meeting. This is to ensure
that all members are given the opportunity to participate in all
membership decisions. If a WG member is unable to attend a meeting
where a planned membership decision is being made, then their consent
is assumed.
No more than 1/3 of the WG members may be affiliated with the same
employer. If removal or resignation of a WG member, or a change of
employment by a WG member, creates a situation where more than 1/3 of
the WG membership shares an employer, then the situation must be
immediately remedied by the resignation or removal of one or more WG
members affiliated with the over-represented employer(s).
### WG Meetings
The WG meets occasionally on a Google Hangout On Air. A designated moderator
approved by the WG runs the meeting. Each meeting should be
published to YouTube.
Items are added to the WG agenda that are considered contentious or
are modifications of governance, contribution policy, WG membership,
or release process.
The intention of the agenda is not to approve or review all patches;
that should happen continuously on GitHub and be handled by the larger
group of Collaborators.
Any community member or contributor can ask that something be added to
the next meeting's agenda by logging a GitHub Issue. Any Collaborator,
WG member or the moderator can add the item to the agenda by adding
the ***WG-agenda*** tag to the issue.
Prior to each WG meeting the moderator will share the Agenda with
members of the WG. WG members can add any items they like to the
agenda at the beginning of each meeting. The moderator and the WG
cannot veto or remove items.
The WG may invite persons or representatives from certain projects to
participate in a non-voting capacity.
The moderator is responsible for summarizing the discussion of each
agenda item and sends it as a pull request after the meeting.
### Consensus Seeking Process
The WG follows a
[Consensus
Seeking](http://en.wikipedia.org/wiki/Consensus-seeking_decision-making)
decision-making model.
When an agenda item has appeared to reach a consensus the moderator
will ask "Does anyone object?" as a final call for dissent from the
consensus.
If an agenda item cannot reach a consensus a WG member can call for
either a closing vote or a vote to table the issue to the next
meeting. The call for a vote must be seconded by a majority of the WG
or else the discussion will continue. Simple majority wins.
Note that changes to WG membership require a majority consensus. See
"WG Membership" above.

View File

@ -0,0 +1,47 @@
Node.js is licensed for use as follows:
"""
Copyright Node.js contributors. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
"""
This license applies to parts of Node.js originating from the
https://github.com/joyent/node repository:
"""
Copyright Joyent, Inc. and other Node contributors. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
"""

View File

@ -0,0 +1,58 @@
# readable-stream
***Node-core v8.11.1 streams for userland*** [![Build Status](https://travis-ci.org/nodejs/readable-stream.svg?branch=master)](https://travis-ci.org/nodejs/readable-stream)
[![NPM](https://nodei.co/npm/readable-stream.png?downloads=true&downloadRank=true)](https://nodei.co/npm/readable-stream/)
[![NPM](https://nodei.co/npm-dl/readable-stream.png?&months=6&height=3)](https://nodei.co/npm/readable-stream/)
[![Sauce Test Status](https://saucelabs.com/browser-matrix/readable-stream.svg)](https://saucelabs.com/u/readable-stream)
```bash
npm install --save readable-stream
```
***Node-core streams for userland***
This package is a mirror of the Streams2 and Streams3 implementations in
Node-core.
Full documentation may be found on the [Node.js website](https://nodejs.org/dist/v8.11.1/docs/api/stream.html).
If you want to guarantee a stable streams base, regardless of what version of
Node you, or the users of your libraries are using, use **readable-stream** *only* and avoid the *"stream"* module in Node-core, for background see [this blogpost](http://r.va.gg/2014/06/why-i-dont-use-nodes-core-stream-module.html).
As of version 2.0.0 **readable-stream** uses semantic versioning.
# Streams Working Group
`readable-stream` is maintained by the Streams Working Group, which
oversees the development and maintenance of the Streams API within
Node.js. The responsibilities of the Streams Working Group include:
* Addressing stream issues on the Node.js issue tracker.
* Authoring and editing stream documentation within the Node.js project.
* Reviewing changes to stream subclasses within the Node.js project.
* Redirecting changes to streams from the Node.js project to this
project.
* Assisting in the implementation of stream providers within Node.js.
* Recommending versions of `readable-stream` to be included in Node.js.
* Messaging about the future of streams to give the community advance
notice of changes.
<a name="members"></a>
## Team Members
* **Chris Dickinson** ([@chrisdickinson](https://github.com/chrisdickinson)) &lt;christopher.s.dickinson@gmail.com&gt;
- Release GPG key: 9554F04D7259F04124DE6B476D5A82AC7E37093B
* **Calvin Metcalf** ([@calvinmetcalf](https://github.com/calvinmetcalf)) &lt;calvin.metcalf@gmail.com&gt;
- Release GPG key: F3EF5F62A87FC27A22E643F714CE4FF5015AA242
* **Rod Vagg** ([@rvagg](https://github.com/rvagg)) &lt;rod@vagg.org&gt;
- Release GPG key: DD8F2338BAE7501E3DD5AC78C273792F7D83545D
* **Sam Newman** ([@sonewman](https://github.com/sonewman)) &lt;newmansam@outlook.com&gt;
* **Mathias Buus** ([@mafintosh](https://github.com/mafintosh)) &lt;mathiasbuus@gmail.com&gt;
* **Domenic Denicola** ([@domenic](https://github.com/domenic)) &lt;d@domenic.me&gt;
* **Matteo Collina** ([@mcollina](https://github.com/mcollina)) &lt;matteo.collina@gmail.com&gt;
- Release GPG key: 3ABC01543F22DD2239285CDD818674489FBC127E
* **Irina Shestak** ([@lrlna](https://github.com/lrlna)) &lt;shestak.irina@gmail.com&gt;

View File

@ -0,0 +1,60 @@
# streams WG Meeting 2015-01-30
## Links
* **Google Hangouts Video**: http://www.youtube.com/watch?v=I9nDOSGfwZg
* **GitHub Issue**: https://github.com/iojs/readable-stream/issues/106
* **Original Minutes Google Doc**: https://docs.google.com/document/d/17aTgLnjMXIrfjgNaTUnHQO7m3xgzHR2VXBTmi03Qii4/
## Agenda
Extracted from https://github.com/iojs/readable-stream/labels/wg-agenda prior to meeting.
* adopt a charter [#105](https://github.com/iojs/readable-stream/issues/105)
* release and versioning strategy [#101](https://github.com/iojs/readable-stream/issues/101)
* simpler stream creation [#102](https://github.com/iojs/readable-stream/issues/102)
* proposal: deprecate implicit flowing of streams [#99](https://github.com/iojs/readable-stream/issues/99)
## Minutes
### adopt a charter
* group: +1's all around
### What versioning scheme should be adopted?
* group: +1s 3.0.0
* domenic+group: pulling in patches from other sources where appropriate
* mikeal: version independently, suggesting versions for io.js
* mikeal+domenic: work with TC to notify in advance of changes
simpler stream creation
### streamline creation of streams
* sam: streamline creation of streams
* domenic: nice simple solution posted
but, we lose the opportunity to change the model
may not be backwards incompatible (double check keys)
**action item:** domenic will check
### remove implicit flowing of streams on(data)
* add isFlowing / isPaused
* mikeal: worrying that were documenting polyfill methods confuses users
* domenic: more reflective API is probably good, with warning labels for users
* new section for mad scientists (reflective stream access)
* calvin: name the “third state”
* mikeal: maybe borrow the name from whatwg?
* domenic: were missing the “third state”
* consensus: kind of difficult to name the third state
* mikeal: figure out differences in states / compat
* mathias: always flow on data eliminates third state
* explore what it breaks
**action items:**
* ask isaac for ability to list packages by what public io.js APIs they use (esp. Stream)
* ask rod/build for infrastructure
* **chris**: explore the “flow on data” approach
* add isPaused/isFlowing
* add new docs section
* move isPaused to that section

View File

@ -0,0 +1 @@
module.exports = require('./lib/_stream_duplex.js');

View File

@ -0,0 +1 @@
module.exports = require('./readable').Duplex

View File

@ -0,0 +1,131 @@
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
// a duplex stream is just a stream that is both readable and writable.
// Since JS doesn't have multiple prototypal inheritance, this class
// prototypally inherits from Readable, and then parasitically from
// Writable.
'use strict';
/*<replacement>*/
var pna = require('process-nextick-args');
/*</replacement>*/
/*<replacement>*/
var objectKeys = Object.keys || function (obj) {
var keys = [];
for (var key in obj) {
keys.push(key);
}return keys;
};
/*</replacement>*/
module.exports = Duplex;
/*<replacement>*/
var util = Object.create(require('core-util-is'));
util.inherits = require('inherits');
/*</replacement>*/
var Readable = require('./_stream_readable');
var Writable = require('./_stream_writable');
util.inherits(Duplex, Readable);
{
// avoid scope creep, the keys array can then be collected
var keys = objectKeys(Writable.prototype);
for (var v = 0; v < keys.length; v++) {
var method = keys[v];
if (!Duplex.prototype[method]) Duplex.prototype[method] = Writable.prototype[method];
}
}
function Duplex(options) {
if (!(this instanceof Duplex)) return new Duplex(options);
Readable.call(this, options);
Writable.call(this, options);
if (options && options.readable === false) this.readable = false;
if (options && options.writable === false) this.writable = false;
this.allowHalfOpen = true;
if (options && options.allowHalfOpen === false) this.allowHalfOpen = false;
this.once('end', onend);
}
Object.defineProperty(Duplex.prototype, 'writableHighWaterMark', {
// making it explicit this property is not enumerable
// because otherwise some prototype manipulation in
// userland will fail
enumerable: false,
get: function () {
return this._writableState.highWaterMark;
}
});
// the no-half-open enforcer
function onend() {
// if we allow half-open state, or if the writable side ended,
// then we're ok.
if (this.allowHalfOpen || this._writableState.ended) return;
// no more data can be written.
// But allow more writes to happen in this tick.
pna.nextTick(onEndNT, this);
}
function onEndNT(self) {
self.end();
}
Object.defineProperty(Duplex.prototype, 'destroyed', {
get: function () {
if (this._readableState === undefined || this._writableState === undefined) {
return false;
}
return this._readableState.destroyed && this._writableState.destroyed;
},
set: function (value) {
// we ignore the value if the stream
// has not been initialized yet
if (this._readableState === undefined || this._writableState === undefined) {
return;
}
// backward compatibility, the user is explicitly
// managing destroyed
this._readableState.destroyed = value;
this._writableState.destroyed = value;
}
});
Duplex.prototype._destroy = function (err, cb) {
this.push(null);
this.end();
pna.nextTick(cb, err);
};

View File

@ -0,0 +1,47 @@
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
// a passthrough stream.
// basically just the most minimal sort of Transform stream.
// Every written chunk gets output as-is.
'use strict';
module.exports = PassThrough;
var Transform = require('./_stream_transform');
/*<replacement>*/
var util = Object.create(require('core-util-is'));
util.inherits = require('inherits');
/*</replacement>*/
util.inherits(PassThrough, Transform);
function PassThrough(options) {
if (!(this instanceof PassThrough)) return new PassThrough(options);
Transform.call(this, options);
}
PassThrough.prototype._transform = function (chunk, encoding, cb) {
cb(null, chunk);
};

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,214 @@
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
// a transform stream is a readable/writable stream where you do
// something with the data. Sometimes it's called a "filter",
// but that's not a great name for it, since that implies a thing where
// some bits pass through, and others are simply ignored. (That would
// be a valid example of a transform, of course.)
//
// While the output is causally related to the input, it's not a
// necessarily symmetric or synchronous transformation. For example,
// a zlib stream might take multiple plain-text writes(), and then
// emit a single compressed chunk some time in the future.
//
// Here's how this works:
//
// The Transform stream has all the aspects of the readable and writable
// stream classes. When you write(chunk), that calls _write(chunk,cb)
// internally, and returns false if there's a lot of pending writes
// buffered up. When you call read(), that calls _read(n) until
// there's enough pending readable data buffered up.
//
// In a transform stream, the written data is placed in a buffer. When
// _read(n) is called, it transforms the queued up data, calling the
// buffered _write cb's as it consumes chunks. If consuming a single
// written chunk would result in multiple output chunks, then the first
// outputted bit calls the readcb, and subsequent chunks just go into
// the read buffer, and will cause it to emit 'readable' if necessary.
//
// This way, back-pressure is actually determined by the reading side,
// since _read has to be called to start processing a new chunk. However,
// a pathological inflate type of transform can cause excessive buffering
// here. For example, imagine a stream where every byte of input is
// interpreted as an integer from 0-255, and then results in that many
// bytes of output. Writing the 4 bytes {ff,ff,ff,ff} would result in
// 1kb of data being output. In this case, you could write a very small
// amount of input, and end up with a very large amount of output. In
// such a pathological inflating mechanism, there'd be no way to tell
// the system to stop doing the transform. A single 4MB write could
// cause the system to run out of memory.
//
// However, even in such a pathological case, only a single written chunk
// would be consumed, and then the rest would wait (un-transformed) until
// the results of the previous transformed chunk were consumed.
'use strict';
module.exports = Transform;
var Duplex = require('./_stream_duplex');
/*<replacement>*/
var util = Object.create(require('core-util-is'));
util.inherits = require('inherits');
/*</replacement>*/
util.inherits(Transform, Duplex);
function afterTransform(er, data) {
var ts = this._transformState;
ts.transforming = false;
var cb = ts.writecb;
if (!cb) {
return this.emit('error', new Error('write callback called multiple times'));
}
ts.writechunk = null;
ts.writecb = null;
if (data != null) // single equals check for both `null` and `undefined`
this.push(data);
cb(er);
var rs = this._readableState;
rs.reading = false;
if (rs.needReadable || rs.length < rs.highWaterMark) {
this._read(rs.highWaterMark);
}
}
function Transform(options) {
if (!(this instanceof Transform)) return new Transform(options);
Duplex.call(this, options);
this._transformState = {
afterTransform: afterTransform.bind(this),
needTransform: false,
transforming: false,
writecb: null,
writechunk: null,
writeencoding: null
};
// start out asking for a readable event once data is transformed.
this._readableState.needReadable = true;
// we have implemented the _read method, and done the other things
// that Readable wants before the first _read call, so unset the
// sync guard flag.
this._readableState.sync = false;
if (options) {
if (typeof options.transform === 'function') this._transform = options.transform;
if (typeof options.flush === 'function') this._flush = options.flush;
}
// When the writable side finishes, then flush out anything remaining.
this.on('prefinish', prefinish);
}
function prefinish() {
var _this = this;
if (typeof this._flush === 'function') {
this._flush(function (er, data) {
done(_this, er, data);
});
} else {
done(this, null, null);
}
}
Transform.prototype.push = function (chunk, encoding) {
this._transformState.needTransform = false;
return Duplex.prototype.push.call(this, chunk, encoding);
};
// This is the part where you do stuff!
// override this function in implementation classes.
// 'chunk' is an input chunk.
//
// Call `push(newChunk)` to pass along transformed output
// to the readable side. You may call 'push' zero or more times.
//
// Call `cb(err)` when you are done with this chunk. If you pass
// an error, then that'll put the hurt on the whole operation. If you
// never call cb(), then you'll never get another chunk.
Transform.prototype._transform = function (chunk, encoding, cb) {
throw new Error('_transform() is not implemented');
};
Transform.prototype._write = function (chunk, encoding, cb) {
var ts = this._transformState;
ts.writecb = cb;
ts.writechunk = chunk;
ts.writeencoding = encoding;
if (!ts.transforming) {
var rs = this._readableState;
if (ts.needTransform || rs.needReadable || rs.length < rs.highWaterMark) this._read(rs.highWaterMark);
}
};
// Doesn't matter what the args are here.
// _transform does all the work.
// That we got here means that the readable side wants more data.
Transform.prototype._read = function (n) {
var ts = this._transformState;
if (ts.writechunk !== null && ts.writecb && !ts.transforming) {
ts.transforming = true;
this._transform(ts.writechunk, ts.writeencoding, ts.afterTransform);
} else {
// mark that we need a transform, so that any data that comes in
// will get processed, now that we've asked for it.
ts.needTransform = true;
}
};
Transform.prototype._destroy = function (err, cb) {
var _this2 = this;
Duplex.prototype._destroy.call(this, err, function (err2) {
cb(err2);
_this2.emit('close');
});
};
function done(stream, er, data) {
if (er) return stream.emit('error', er);
if (data != null) // single equals check for both `null` and `undefined`
stream.push(data);
// if there's nothing in the write buffer, then that means
// that nothing more will ever be provided
if (stream._writableState.length) throw new Error('Calling transform done when ws.length != 0');
if (stream._transformState.transforming) throw new Error('Calling transform done when still transforming');
return stream.push(null);
}

View File

@ -0,0 +1,687 @@
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
// A bit simpler than readable streams.
// Implement an async ._write(chunk, encoding, cb), and it'll handle all
// the drain event emission and buffering.
'use strict';
/*<replacement>*/
var pna = require('process-nextick-args');
/*</replacement>*/
module.exports = Writable;
/* <replacement> */
function WriteReq(chunk, encoding, cb) {
this.chunk = chunk;
this.encoding = encoding;
this.callback = cb;
this.next = null;
}
// It seems a linked list but it is not
// there will be only 2 of these for each stream
function CorkedRequest(state) {
var _this = this;
this.next = null;
this.entry = null;
this.finish = function () {
onCorkedFinish(_this, state);
};
}
/* </replacement> */
/*<replacement>*/
var asyncWrite = !process.browser && ['v0.10', 'v0.9.'].indexOf(process.version.slice(0, 5)) > -1 ? setImmediate : pna.nextTick;
/*</replacement>*/
/*<replacement>*/
var Duplex;
/*</replacement>*/
Writable.WritableState = WritableState;
/*<replacement>*/
var util = Object.create(require('core-util-is'));
util.inherits = require('inherits');
/*</replacement>*/
/*<replacement>*/
var internalUtil = {
deprecate: require('util-deprecate')
};
/*</replacement>*/
/*<replacement>*/
var Stream = require('./internal/streams/stream');
/*</replacement>*/
/*<replacement>*/
var Buffer = require('safe-buffer').Buffer;
var OurUint8Array = global.Uint8Array || function () {};
function _uint8ArrayToBuffer(chunk) {
return Buffer.from(chunk);
}
function _isUint8Array(obj) {
return Buffer.isBuffer(obj) || obj instanceof OurUint8Array;
}
/*</replacement>*/
var destroyImpl = require('./internal/streams/destroy');
util.inherits(Writable, Stream);
function nop() {}
function WritableState(options, stream) {
Duplex = Duplex || require('./_stream_duplex');
options = options || {};
// Duplex streams are both readable and writable, but share
// the same options object.
// However, some cases require setting options to different
// values for the readable and the writable sides of the duplex stream.
// These options can be provided separately as readableXXX and writableXXX.
var isDuplex = stream instanceof Duplex;
// object stream flag to indicate whether or not this stream
// contains buffers or objects.
this.objectMode = !!options.objectMode;
if (isDuplex) this.objectMode = this.objectMode || !!options.writableObjectMode;
// the point at which write() starts returning false
// Note: 0 is a valid value, means that we always return false if
// the entire buffer is not flushed immediately on write()
var hwm = options.highWaterMark;
var writableHwm = options.writableHighWaterMark;
var defaultHwm = this.objectMode ? 16 : 16 * 1024;
if (hwm || hwm === 0) this.highWaterMark = hwm;else if (isDuplex && (writableHwm || writableHwm === 0)) this.highWaterMark = writableHwm;else this.highWaterMark = defaultHwm;
// cast to ints.
this.highWaterMark = Math.floor(this.highWaterMark);
// if _final has been called
this.finalCalled = false;
// drain event flag.
this.needDrain = false;
// at the start of calling end()
this.ending = false;
// when end() has been called, and returned
this.ended = false;
// when 'finish' is emitted
this.finished = false;
// has it been destroyed
this.destroyed = false;
// should we decode strings into buffers before passing to _write?
// this is here so that some node-core streams can optimize string
// handling at a lower level.
var noDecode = options.decodeStrings === false;
this.decodeStrings = !noDecode;
// Crypto is kind of old and crusty. Historically, its default string
// encoding is 'binary' so we have to make this configurable.
// Everything else in the universe uses 'utf8', though.
this.defaultEncoding = options.defaultEncoding || 'utf8';
// not an actual buffer we keep track of, but a measurement
// of how much we're waiting to get pushed to some underlying
// socket or file.
this.length = 0;
// a flag to see when we're in the middle of a write.
this.writing = false;
// when true all writes will be buffered until .uncork() call
this.corked = 0;
// a flag to be able to tell if the onwrite cb is called immediately,
// or on a later tick. We set this to true at first, because any
// actions that shouldn't happen until "later" should generally also
// not happen before the first write call.
this.sync = true;
// a flag to know if we're processing previously buffered items, which
// may call the _write() callback in the same tick, so that we don't
// end up in an overlapped onwrite situation.
this.bufferProcessing = false;
// the callback that's passed to _write(chunk,cb)
this.onwrite = function (er) {
onwrite(stream, er);
};
// the callback that the user supplies to write(chunk,encoding,cb)
this.writecb = null;
// the amount that is being written when _write is called.
this.writelen = 0;
this.bufferedRequest = null;
this.lastBufferedRequest = null;
// number of pending user-supplied write callbacks
// this must be 0 before 'finish' can be emitted
this.pendingcb = 0;
// emit prefinish if the only thing we're waiting for is _write cbs
// This is relevant for synchronous Transform streams
this.prefinished = false;
// True if the error was already emitted and should not be thrown again
this.errorEmitted = false;
// count buffered requests
this.bufferedRequestCount = 0;
// allocate the first CorkedRequest, there is always
// one allocated and free to use, and we maintain at most two
this.corkedRequestsFree = new CorkedRequest(this);
}
WritableState.prototype.getBuffer = function getBuffer() {
var current = this.bufferedRequest;
var out = [];
while (current) {
out.push(current);
current = current.next;
}
return out;
};
(function () {
try {
Object.defineProperty(WritableState.prototype, 'buffer', {
get: internalUtil.deprecate(function () {
return this.getBuffer();
}, '_writableState.buffer is deprecated. Use _writableState.getBuffer ' + 'instead.', 'DEP0003')
});
} catch (_) {}
})();
// Test _writableState for inheritance to account for Duplex streams,
// whose prototype chain only points to Readable.
var realHasInstance;
if (typeof Symbol === 'function' && Symbol.hasInstance && typeof Function.prototype[Symbol.hasInstance] === 'function') {
realHasInstance = Function.prototype[Symbol.hasInstance];
Object.defineProperty(Writable, Symbol.hasInstance, {
value: function (object) {
if (realHasInstance.call(this, object)) return true;
if (this !== Writable) return false;
return object && object._writableState instanceof WritableState;
}
});
} else {
realHasInstance = function (object) {
return object instanceof this;
};
}
function Writable(options) {
Duplex = Duplex || require('./_stream_duplex');
// Writable ctor is applied to Duplexes, too.
// `realHasInstance` is necessary because using plain `instanceof`
// would return false, as no `_writableState` property is attached.
// Trying to use the custom `instanceof` for Writable here will also break the
// Node.js LazyTransform implementation, which has a non-trivial getter for
// `_writableState` that would lead to infinite recursion.
if (!realHasInstance.call(Writable, this) && !(this instanceof Duplex)) {
return new Writable(options);
}
this._writableState = new WritableState(options, this);
// legacy.
this.writable = true;
if (options) {
if (typeof options.write === 'function') this._write = options.write;
if (typeof options.writev === 'function') this._writev = options.writev;
if (typeof options.destroy === 'function') this._destroy = options.destroy;
if (typeof options.final === 'function') this._final = options.final;
}
Stream.call(this);
}
// Otherwise people can pipe Writable streams, which is just wrong.
Writable.prototype.pipe = function () {
this.emit('error', new Error('Cannot pipe, not readable'));
};
function writeAfterEnd(stream, cb) {
var er = new Error('write after end');
// TODO: defer error events consistently everywhere, not just the cb
stream.emit('error', er);
pna.nextTick(cb, er);
}
// Checks that a user-supplied chunk is valid, especially for the particular
// mode the stream is in. Currently this means that `null` is never accepted
// and undefined/non-string values are only allowed in object mode.
function validChunk(stream, state, chunk, cb) {
var valid = true;
var er = false;
if (chunk === null) {
er = new TypeError('May not write null values to stream');
} else if (typeof chunk !== 'string' && chunk !== undefined && !state.objectMode) {
er = new TypeError('Invalid non-string/buffer chunk');
}
if (er) {
stream.emit('error', er);
pna.nextTick(cb, er);
valid = false;
}
return valid;
}
Writable.prototype.write = function (chunk, encoding, cb) {
var state = this._writableState;
var ret = false;
var isBuf = !state.objectMode && _isUint8Array(chunk);
if (isBuf && !Buffer.isBuffer(chunk)) {
chunk = _uint8ArrayToBuffer(chunk);
}
if (typeof encoding === 'function') {
cb = encoding;
encoding = null;
}
if (isBuf) encoding = 'buffer';else if (!encoding) encoding = state.defaultEncoding;
if (typeof cb !== 'function') cb = nop;
if (state.ended) writeAfterEnd(this, cb);else if (isBuf || validChunk(this, state, chunk, cb)) {
state.pendingcb++;
ret = writeOrBuffer(this, state, isBuf, chunk, encoding, cb);
}
return ret;
};
Writable.prototype.cork = function () {
var state = this._writableState;
state.corked++;
};
Writable.prototype.uncork = function () {
var state = this._writableState;
if (state.corked) {
state.corked--;
if (!state.writing && !state.corked && !state.finished && !state.bufferProcessing && state.bufferedRequest) clearBuffer(this, state);
}
};
Writable.prototype.setDefaultEncoding = function setDefaultEncoding(encoding) {
// node::ParseEncoding() requires lower case.
if (typeof encoding === 'string') encoding = encoding.toLowerCase();
if (!(['hex', 'utf8', 'utf-8', 'ascii', 'binary', 'base64', 'ucs2', 'ucs-2', 'utf16le', 'utf-16le', 'raw'].indexOf((encoding + '').toLowerCase()) > -1)) throw new TypeError('Unknown encoding: ' + encoding);
this._writableState.defaultEncoding = encoding;
return this;
};
function decodeChunk(state, chunk, encoding) {
if (!state.objectMode && state.decodeStrings !== false && typeof chunk === 'string') {
chunk = Buffer.from(chunk, encoding);
}
return chunk;
}
Object.defineProperty(Writable.prototype, 'writableHighWaterMark', {
// making it explicit this property is not enumerable
// because otherwise some prototype manipulation in
// userland will fail
enumerable: false,
get: function () {
return this._writableState.highWaterMark;
}
});
// if we're already writing something, then just put this
// in the queue, and wait our turn. Otherwise, call _write
// If we return false, then we need a drain event, so set that flag.
function writeOrBuffer(stream, state, isBuf, chunk, encoding, cb) {
if (!isBuf) {
var newChunk = decodeChunk(state, chunk, encoding);
if (chunk !== newChunk) {
isBuf = true;
encoding = 'buffer';
chunk = newChunk;
}
}
var len = state.objectMode ? 1 : chunk.length;
state.length += len;
var ret = state.length < state.highWaterMark;
// we must ensure that previous needDrain will not be reset to false.
if (!ret) state.needDrain = true;
if (state.writing || state.corked) {
var last = state.lastBufferedRequest;
state.lastBufferedRequest = {
chunk: chunk,
encoding: encoding,
isBuf: isBuf,
callback: cb,
next: null
};
if (last) {
last.next = state.lastBufferedRequest;
} else {
state.bufferedRequest = state.lastBufferedRequest;
}
state.bufferedRequestCount += 1;
} else {
doWrite(stream, state, false, len, chunk, encoding, cb);
}
return ret;
}
function doWrite(stream, state, writev, len, chunk, encoding, cb) {
state.writelen = len;
state.writecb = cb;
state.writing = true;
state.sync = true;
if (writev) stream._writev(chunk, state.onwrite);else stream._write(chunk, encoding, state.onwrite);
state.sync = false;
}
function onwriteError(stream, state, sync, er, cb) {
--state.pendingcb;
if (sync) {
// defer the callback if we are being called synchronously
// to avoid piling up things on the stack
pna.nextTick(cb, er);
// this can emit finish, and it will always happen
// after error
pna.nextTick(finishMaybe, stream, state);
stream._writableState.errorEmitted = true;
stream.emit('error', er);
} else {
// the caller expect this to happen before if
// it is async
cb(er);
stream._writableState.errorEmitted = true;
stream.emit('error', er);
// this can emit finish, but finish must
// always follow error
finishMaybe(stream, state);
}
}
function onwriteStateUpdate(state) {
state.writing = false;
state.writecb = null;
state.length -= state.writelen;
state.writelen = 0;
}
function onwrite(stream, er) {
var state = stream._writableState;
var sync = state.sync;
var cb = state.writecb;
onwriteStateUpdate(state);
if (er) onwriteError(stream, state, sync, er, cb);else {
// Check if we're actually ready to finish, but don't emit yet
var finished = needFinish(state);
if (!finished && !state.corked && !state.bufferProcessing && state.bufferedRequest) {
clearBuffer(stream, state);
}
if (sync) {
/*<replacement>*/
asyncWrite(afterWrite, stream, state, finished, cb);
/*</replacement>*/
} else {
afterWrite(stream, state, finished, cb);
}
}
}
function afterWrite(stream, state, finished, cb) {
if (!finished) onwriteDrain(stream, state);
state.pendingcb--;
cb();
finishMaybe(stream, state);
}
// Must force callback to be called on nextTick, so that we don't
// emit 'drain' before the write() consumer gets the 'false' return
// value, and has a chance to attach a 'drain' listener.
function onwriteDrain(stream, state) {
if (state.length === 0 && state.needDrain) {
state.needDrain = false;
stream.emit('drain');
}
}
// if there's something in the buffer waiting, then process it
function clearBuffer(stream, state) {
state.bufferProcessing = true;
var entry = state.bufferedRequest;
if (stream._writev && entry && entry.next) {
// Fast case, write everything using _writev()
var l = state.bufferedRequestCount;
var buffer = new Array(l);
var holder = state.corkedRequestsFree;
holder.entry = entry;
var count = 0;
var allBuffers = true;
while (entry) {
buffer[count] = entry;
if (!entry.isBuf) allBuffers = false;
entry = entry.next;
count += 1;
}
buffer.allBuffers = allBuffers;
doWrite(stream, state, true, state.length, buffer, '', holder.finish);
// doWrite is almost always async, defer these to save a bit of time
// as the hot path ends with doWrite
state.pendingcb++;
state.lastBufferedRequest = null;
if (holder.next) {
state.corkedRequestsFree = holder.next;
holder.next = null;
} else {
state.corkedRequestsFree = new CorkedRequest(state);
}
state.bufferedRequestCount = 0;
} else {
// Slow case, write chunks one-by-one
while (entry) {
var chunk = entry.chunk;
var encoding = entry.encoding;
var cb = entry.callback;
var len = state.objectMode ? 1 : chunk.length;
doWrite(stream, state, false, len, chunk, encoding, cb);
entry = entry.next;
state.bufferedRequestCount--;
// if we didn't call the onwrite immediately, then
// it means that we need to wait until it does.
// also, that means that the chunk and cb are currently
// being processed, so move the buffer counter past them.
if (state.writing) {
break;
}
}
if (entry === null) state.lastBufferedRequest = null;
}
state.bufferedRequest = entry;
state.bufferProcessing = false;
}
Writable.prototype._write = function (chunk, encoding, cb) {
cb(new Error('_write() is not implemented'));
};
Writable.prototype._writev = null;
Writable.prototype.end = function (chunk, encoding, cb) {
var state = this._writableState;
if (typeof chunk === 'function') {
cb = chunk;
chunk = null;
encoding = null;
} else if (typeof encoding === 'function') {
cb = encoding;
encoding = null;
}
if (chunk !== null && chunk !== undefined) this.write(chunk, encoding);
// .end() fully uncorks
if (state.corked) {
state.corked = 1;
this.uncork();
}
// ignore unnecessary end() calls.
if (!state.ending && !state.finished) endWritable(this, state, cb);
};
function needFinish(state) {
return state.ending && state.length === 0 && state.bufferedRequest === null && !state.finished && !state.writing;
}
function callFinal(stream, state) {
stream._final(function (err) {
state.pendingcb--;
if (err) {
stream.emit('error', err);
}
state.prefinished = true;
stream.emit('prefinish');
finishMaybe(stream, state);
});
}
function prefinish(stream, state) {
if (!state.prefinished && !state.finalCalled) {
if (typeof stream._final === 'function') {
state.pendingcb++;
state.finalCalled = true;
pna.nextTick(callFinal, stream, state);
} else {
state.prefinished = true;
stream.emit('prefinish');
}
}
}
function finishMaybe(stream, state) {
var need = needFinish(state);
if (need) {
prefinish(stream, state);
if (state.pendingcb === 0) {
state.finished = true;
stream.emit('finish');
}
}
return need;
}
function endWritable(stream, state, cb) {
state.ending = true;
finishMaybe(stream, state);
if (cb) {
if (state.finished) pna.nextTick(cb);else stream.once('finish', cb);
}
state.ended = true;
stream.writable = false;
}
function onCorkedFinish(corkReq, state, err) {
var entry = corkReq.entry;
corkReq.entry = null;
while (entry) {
var cb = entry.callback;
state.pendingcb--;
cb(err);
entry = entry.next;
}
if (state.corkedRequestsFree) {
state.corkedRequestsFree.next = corkReq;
} else {
state.corkedRequestsFree = corkReq;
}
}
Object.defineProperty(Writable.prototype, 'destroyed', {
get: function () {
if (this._writableState === undefined) {
return false;
}
return this._writableState.destroyed;
},
set: function (value) {
// we ignore the value if the stream
// has not been initialized yet
if (!this._writableState) {
return;
}
// backward compatibility, the user is explicitly
// managing destroyed
this._writableState.destroyed = value;
}
});
Writable.prototype.destroy = destroyImpl.destroy;
Writable.prototype._undestroy = destroyImpl.undestroy;
Writable.prototype._destroy = function (err, cb) {
this.end();
cb(err);
};

View File

@ -0,0 +1,79 @@
'use strict';
function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } }
var Buffer = require('safe-buffer').Buffer;
var util = require('util');
function copyBuffer(src, target, offset) {
src.copy(target, offset);
}
module.exports = function () {
function BufferList() {
_classCallCheck(this, BufferList);
this.head = null;
this.tail = null;
this.length = 0;
}
BufferList.prototype.push = function push(v) {
var entry = { data: v, next: null };
if (this.length > 0) this.tail.next = entry;else this.head = entry;
this.tail = entry;
++this.length;
};
BufferList.prototype.unshift = function unshift(v) {
var entry = { data: v, next: this.head };
if (this.length === 0) this.tail = entry;
this.head = entry;
++this.length;
};
BufferList.prototype.shift = function shift() {
if (this.length === 0) return;
var ret = this.head.data;
if (this.length === 1) this.head = this.tail = null;else this.head = this.head.next;
--this.length;
return ret;
};
BufferList.prototype.clear = function clear() {
this.head = this.tail = null;
this.length = 0;
};
BufferList.prototype.join = function join(s) {
if (this.length === 0) return '';
var p = this.head;
var ret = '' + p.data;
while (p = p.next) {
ret += s + p.data;
}return ret;
};
BufferList.prototype.concat = function concat(n) {
if (this.length === 0) return Buffer.alloc(0);
if (this.length === 1) return this.head.data;
var ret = Buffer.allocUnsafe(n >>> 0);
var p = this.head;
var i = 0;
while (p) {
copyBuffer(p.data, ret, i);
i += p.data.length;
p = p.next;
}
return ret;
};
return BufferList;
}();
if (util && util.inspect && util.inspect.custom) {
module.exports.prototype[util.inspect.custom] = function () {
var obj = util.inspect({ length: this.length });
return this.constructor.name + ' ' + obj;
};
}

View File

@ -0,0 +1,74 @@
'use strict';
/*<replacement>*/
var pna = require('process-nextick-args');
/*</replacement>*/
// undocumented cb() API, needed for core, not for public API
function destroy(err, cb) {
var _this = this;
var readableDestroyed = this._readableState && this._readableState.destroyed;
var writableDestroyed = this._writableState && this._writableState.destroyed;
if (readableDestroyed || writableDestroyed) {
if (cb) {
cb(err);
} else if (err && (!this._writableState || !this._writableState.errorEmitted)) {
pna.nextTick(emitErrorNT, this, err);
}
return this;
}
// we set destroyed to true before firing error callbacks in order
// to make it re-entrance safe in case destroy() is called within callbacks
if (this._readableState) {
this._readableState.destroyed = true;
}
// if this is a duplex stream mark the writable part as destroyed as well
if (this._writableState) {
this._writableState.destroyed = true;
}
this._destroy(err || null, function (err) {
if (!cb && err) {
pna.nextTick(emitErrorNT, _this, err);
if (_this._writableState) {
_this._writableState.errorEmitted = true;
}
} else if (cb) {
cb(err);
}
});
return this;
}
function undestroy() {
if (this._readableState) {
this._readableState.destroyed = false;
this._readableState.reading = false;
this._readableState.ended = false;
this._readableState.endEmitted = false;
}
if (this._writableState) {
this._writableState.destroyed = false;
this._writableState.ended = false;
this._writableState.ending = false;
this._writableState.finished = false;
this._writableState.errorEmitted = false;
}
}
function emitErrorNT(self, err) {
self.emit('error', err);
}
module.exports = {
destroy: destroy,
undestroy: undestroy
};

View File

@ -0,0 +1 @@
module.exports = require('events').EventEmitter;

View File

@ -0,0 +1 @@
module.exports = require('stream');

View File

@ -0,0 +1,81 @@
{
"_from": "readable-stream@^2.0.6",
"_id": "readable-stream@2.3.7",
"_inBundle": false,
"_integrity": "sha512-Ebho8K4jIbHAxnuxi7o42OrZgF/ZTNcsZj6nRKyUmkhLFq8CHItp/fy6hQZuZmP/n3yZ9VBUbp4zz/mX8hmYPw==",
"_location": "/are-we-there-yet/readable-stream",
"_phantomChildren": {},
"_requested": {
"type": "range",
"registry": true,
"raw": "readable-stream@^2.0.6",
"name": "readable-stream",
"escapedName": "readable-stream",
"rawSpec": "^2.0.6",
"saveSpec": null,
"fetchSpec": "^2.0.6"
},
"_requiredBy": [
"/are-we-there-yet"
],
"_resolved": "https://registry.npmjs.org/readable-stream/-/readable-stream-2.3.7.tgz",
"_shasum": "1eca1cf711aef814c04f62252a36a62f6cb23b57",
"_spec": "readable-stream@^2.0.6",
"_where": "C:\\Users\\matia\\Documents\\GitHub\\Musix-V3\\node_modules\\are-we-there-yet",
"browser": {
"util": false,
"./readable.js": "./readable-browser.js",
"./writable.js": "./writable-browser.js",
"./duplex.js": "./duplex-browser.js",
"./lib/internal/streams/stream.js": "./lib/internal/streams/stream-browser.js"
},
"bugs": {
"url": "https://github.com/nodejs/readable-stream/issues"
},
"bundleDependencies": false,
"dependencies": {
"core-util-is": "~1.0.0",
"inherits": "~2.0.3",
"isarray": "~1.0.0",
"process-nextick-args": "~2.0.0",
"safe-buffer": "~5.1.1",
"string_decoder": "~1.1.1",
"util-deprecate": "~1.0.1"
},
"deprecated": false,
"description": "Streams3, a user-land copy of the stream library from Node.js",
"devDependencies": {
"assert": "^1.4.0",
"babel-polyfill": "^6.9.1",
"buffer": "^4.9.0",
"lolex": "^2.3.2",
"nyc": "^6.4.0",
"tap": "^0.7.0",
"tape": "^4.8.0"
},
"homepage": "https://github.com/nodejs/readable-stream#readme",
"keywords": [
"readable",
"stream",
"pipe"
],
"license": "MIT",
"main": "readable.js",
"name": "readable-stream",
"nyc": {
"include": [
"lib/**.js"
]
},
"repository": {
"type": "git",
"url": "git://github.com/nodejs/readable-stream.git"
},
"scripts": {
"ci": "tap test/parallel/*.js test/ours/*.js --tap | tee test.tap && node test/verify-dependencies.js",
"cover": "nyc npm test",
"report": "nyc report --reporter=lcov",
"test": "tap test/parallel/*.js test/ours/*.js && node test/verify-dependencies.js"
},
"version": "2.3.7"
}

View File

@ -0,0 +1 @@
module.exports = require('./readable').PassThrough

View File

@ -0,0 +1,7 @@
exports = module.exports = require('./lib/_stream_readable.js');
exports.Stream = exports;
exports.Readable = exports;
exports.Writable = require('./lib/_stream_writable.js');
exports.Duplex = require('./lib/_stream_duplex.js');
exports.Transform = require('./lib/_stream_transform.js');
exports.PassThrough = require('./lib/_stream_passthrough.js');

View File

@ -0,0 +1,19 @@
var Stream = require('stream');
if (process.env.READABLE_STREAM === 'disable' && Stream) {
module.exports = Stream;
exports = module.exports = Stream.Readable;
exports.Readable = Stream.Readable;
exports.Writable = Stream.Writable;
exports.Duplex = Stream.Duplex;
exports.Transform = Stream.Transform;
exports.PassThrough = Stream.PassThrough;
exports.Stream = Stream;
} else {
exports = module.exports = require('./lib/_stream_readable.js');
exports.Stream = Stream || exports;
exports.Readable = exports;
exports.Writable = require('./lib/_stream_writable.js');
exports.Duplex = require('./lib/_stream_duplex.js');
exports.Transform = require('./lib/_stream_transform.js');
exports.PassThrough = require('./lib/_stream_passthrough.js');
}

View File

@ -0,0 +1 @@
module.exports = require('./readable').Transform

View File

@ -0,0 +1 @@
module.exports = require('./lib/_stream_writable.js');

View File

@ -0,0 +1,8 @@
var Stream = require("stream")
var Writable = require("./lib/_stream_writable.js")
if (process.env.READABLE_STREAM === 'disable') {
module.exports = Stream && Stream.Writable || Writable
} else {
module.exports = Writable
}

View File

@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) Feross Aboukhadijeh
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

View File

@ -0,0 +1,584 @@
# safe-buffer [![travis][travis-image]][travis-url] [![npm][npm-image]][npm-url] [![downloads][downloads-image]][downloads-url] [![javascript style guide][standard-image]][standard-url]
[travis-image]: https://img.shields.io/travis/feross/safe-buffer/master.svg
[travis-url]: https://travis-ci.org/feross/safe-buffer
[npm-image]: https://img.shields.io/npm/v/safe-buffer.svg
[npm-url]: https://npmjs.org/package/safe-buffer
[downloads-image]: https://img.shields.io/npm/dm/safe-buffer.svg
[downloads-url]: https://npmjs.org/package/safe-buffer
[standard-image]: https://img.shields.io/badge/code_style-standard-brightgreen.svg
[standard-url]: https://standardjs.com
#### Safer Node.js Buffer API
**Use the new Node.js Buffer APIs (`Buffer.from`, `Buffer.alloc`,
`Buffer.allocUnsafe`, `Buffer.allocUnsafeSlow`) in all versions of Node.js.**
**Uses the built-in implementation when available.**
## install
```
npm install safe-buffer
```
## usage
The goal of this package is to provide a safe replacement for the node.js `Buffer`.
It's a drop-in replacement for `Buffer`. You can use it by adding one `require` line to
the top of your node.js modules:
```js
var Buffer = require('safe-buffer').Buffer
// Existing buffer code will continue to work without issues:
new Buffer('hey', 'utf8')
new Buffer([1, 2, 3], 'utf8')
new Buffer(obj)
new Buffer(16) // create an uninitialized buffer (potentially unsafe)
// But you can use these new explicit APIs to make clear what you want:
Buffer.from('hey', 'utf8') // convert from many types to a Buffer
Buffer.alloc(16) // create a zero-filled buffer (safe)
Buffer.allocUnsafe(16) // create an uninitialized buffer (potentially unsafe)
```
## api
### Class Method: Buffer.from(array)
<!-- YAML
added: v3.0.0
-->
* `array` {Array}
Allocates a new `Buffer` using an `array` of octets.
```js
const buf = Buffer.from([0x62,0x75,0x66,0x66,0x65,0x72]);
// creates a new Buffer containing ASCII bytes
// ['b','u','f','f','e','r']
```
A `TypeError` will be thrown if `array` is not an `Array`.
### Class Method: Buffer.from(arrayBuffer[, byteOffset[, length]])
<!-- YAML
added: v5.10.0
-->
* `arrayBuffer` {ArrayBuffer} The `.buffer` property of a `TypedArray` or
a `new ArrayBuffer()`
* `byteOffset` {Number} Default: `0`
* `length` {Number} Default: `arrayBuffer.length - byteOffset`
When passed a reference to the `.buffer` property of a `TypedArray` instance,
the newly created `Buffer` will share the same allocated memory as the
TypedArray.
```js
const arr = new Uint16Array(2);
arr[0] = 5000;
arr[1] = 4000;
const buf = Buffer.from(arr.buffer); // shares the memory with arr;
console.log(buf);
// Prints: <Buffer 88 13 a0 0f>
// changing the TypedArray changes the Buffer also
arr[1] = 6000;
console.log(buf);
// Prints: <Buffer 88 13 70 17>
```
The optional `byteOffset` and `length` arguments specify a memory range within
the `arrayBuffer` that will be shared by the `Buffer`.
```js
const ab = new ArrayBuffer(10);
const buf = Buffer.from(ab, 0, 2);
console.log(buf.length);
// Prints: 2
```
A `TypeError` will be thrown if `arrayBuffer` is not an `ArrayBuffer`.
### Class Method: Buffer.from(buffer)
<!-- YAML
added: v3.0.0
-->
* `buffer` {Buffer}
Copies the passed `buffer` data onto a new `Buffer` instance.
```js
const buf1 = Buffer.from('buffer');
const buf2 = Buffer.from(buf1);
buf1[0] = 0x61;
console.log(buf1.toString());
// 'auffer'
console.log(buf2.toString());
// 'buffer' (copy is not changed)
```
A `TypeError` will be thrown if `buffer` is not a `Buffer`.
### Class Method: Buffer.from(str[, encoding])
<!-- YAML
added: v5.10.0
-->
* `str` {String} String to encode.
* `encoding` {String} Encoding to use, Default: `'utf8'`
Creates a new `Buffer` containing the given JavaScript string `str`. If
provided, the `encoding` parameter identifies the character encoding.
If not provided, `encoding` defaults to `'utf8'`.
```js
const buf1 = Buffer.from('this is a tést');
console.log(buf1.toString());
// prints: this is a tést
console.log(buf1.toString('ascii'));
// prints: this is a tC)st
const buf2 = Buffer.from('7468697320697320612074c3a97374', 'hex');
console.log(buf2.toString());
// prints: this is a tést
```
A `TypeError` will be thrown if `str` is not a string.
### Class Method: Buffer.alloc(size[, fill[, encoding]])
<!-- YAML
added: v5.10.0
-->
* `size` {Number}
* `fill` {Value} Default: `undefined`
* `encoding` {String} Default: `utf8`
Allocates a new `Buffer` of `size` bytes. If `fill` is `undefined`, the
`Buffer` will be *zero-filled*.
```js
const buf = Buffer.alloc(5);
console.log(buf);
// <Buffer 00 00 00 00 00>
```
The `size` must be less than or equal to the value of
`require('buffer').kMaxLength` (on 64-bit architectures, `kMaxLength` is
`(2^31)-1`). Otherwise, a [`RangeError`][] is thrown. A zero-length Buffer will
be created if a `size` less than or equal to 0 is specified.
If `fill` is specified, the allocated `Buffer` will be initialized by calling
`buf.fill(fill)`. See [`buf.fill()`][] for more information.
```js
const buf = Buffer.alloc(5, 'a');
console.log(buf);
// <Buffer 61 61 61 61 61>
```
If both `fill` and `encoding` are specified, the allocated `Buffer` will be
initialized by calling `buf.fill(fill, encoding)`. For example:
```js
const buf = Buffer.alloc(11, 'aGVsbG8gd29ybGQ=', 'base64');
console.log(buf);
// <Buffer 68 65 6c 6c 6f 20 77 6f 72 6c 64>
```
Calling `Buffer.alloc(size)` can be significantly slower than the alternative
`Buffer.allocUnsafe(size)` but ensures that the newly created `Buffer` instance
contents will *never contain sensitive data*.
A `TypeError` will be thrown if `size` is not a number.
### Class Method: Buffer.allocUnsafe(size)
<!-- YAML
added: v5.10.0
-->
* `size` {Number}
Allocates a new *non-zero-filled* `Buffer` of `size` bytes. The `size` must
be less than or equal to the value of `require('buffer').kMaxLength` (on 64-bit
architectures, `kMaxLength` is `(2^31)-1`). Otherwise, a [`RangeError`][] is
thrown. A zero-length Buffer will be created if a `size` less than or equal to
0 is specified.
The underlying memory for `Buffer` instances created in this way is *not
initialized*. The contents of the newly created `Buffer` are unknown and
*may contain sensitive data*. Use [`buf.fill(0)`][] to initialize such
`Buffer` instances to zeroes.
```js
const buf = Buffer.allocUnsafe(5);
console.log(buf);
// <Buffer 78 e0 82 02 01>
// (octets will be different, every time)
buf.fill(0);
console.log(buf);
// <Buffer 00 00 00 00 00>
```
A `TypeError` will be thrown if `size` is not a number.
Note that the `Buffer` module pre-allocates an internal `Buffer` instance of
size `Buffer.poolSize` that is used as a pool for the fast allocation of new
`Buffer` instances created using `Buffer.allocUnsafe(size)` (and the deprecated
`new Buffer(size)` constructor) only when `size` is less than or equal to
`Buffer.poolSize >> 1` (floor of `Buffer.poolSize` divided by two). The default
value of `Buffer.poolSize` is `8192` but can be modified.
Use of this pre-allocated internal memory pool is a key difference between
calling `Buffer.alloc(size, fill)` vs. `Buffer.allocUnsafe(size).fill(fill)`.
Specifically, `Buffer.alloc(size, fill)` will *never* use the internal Buffer
pool, while `Buffer.allocUnsafe(size).fill(fill)` *will* use the internal
Buffer pool if `size` is less than or equal to half `Buffer.poolSize`. The
difference is subtle but can be important when an application requires the
additional performance that `Buffer.allocUnsafe(size)` provides.
### Class Method: Buffer.allocUnsafeSlow(size)
<!-- YAML
added: v5.10.0
-->
* `size` {Number}
Allocates a new *non-zero-filled* and non-pooled `Buffer` of `size` bytes. The
`size` must be less than or equal to the value of
`require('buffer').kMaxLength` (on 64-bit architectures, `kMaxLength` is
`(2^31)-1`). Otherwise, a [`RangeError`][] is thrown. A zero-length Buffer will
be created if a `size` less than or equal to 0 is specified.
The underlying memory for `Buffer` instances created in this way is *not
initialized*. The contents of the newly created `Buffer` are unknown and
*may contain sensitive data*. Use [`buf.fill(0)`][] to initialize such
`Buffer` instances to zeroes.
When using `Buffer.allocUnsafe()` to allocate new `Buffer` instances,
allocations under 4KB are, by default, sliced from a single pre-allocated
`Buffer`. This allows applications to avoid the garbage collection overhead of
creating many individually allocated Buffers. This approach improves both
performance and memory usage by eliminating the need to track and cleanup as
many `Persistent` objects.
However, in the case where a developer may need to retain a small chunk of
memory from a pool for an indeterminate amount of time, it may be appropriate
to create an un-pooled Buffer instance using `Buffer.allocUnsafeSlow()` then
copy out the relevant bits.
```js
// need to keep around a few small chunks of memory
const store = [];
socket.on('readable', () => {
const data = socket.read();
// allocate for retained data
const sb = Buffer.allocUnsafeSlow(10);
// copy the data into the new allocation
data.copy(sb, 0, 0, 10);
store.push(sb);
});
```
Use of `Buffer.allocUnsafeSlow()` should be used only as a last resort *after*
a developer has observed undue memory retention in their applications.
A `TypeError` will be thrown if `size` is not a number.
### All the Rest
The rest of the `Buffer` API is exactly the same as in node.js.
[See the docs](https://nodejs.org/api/buffer.html).
## Related links
- [Node.js issue: Buffer(number) is unsafe](https://github.com/nodejs/node/issues/4660)
- [Node.js Enhancement Proposal: Buffer.from/Buffer.alloc/Buffer.zalloc/Buffer() soft-deprecate](https://github.com/nodejs/node-eps/pull/4)
## Why is `Buffer` unsafe?
Today, the node.js `Buffer` constructor is overloaded to handle many different argument
types like `String`, `Array`, `Object`, `TypedArrayView` (`Uint8Array`, etc.),
`ArrayBuffer`, and also `Number`.
The API is optimized for convenience: you can throw any type at it, and it will try to do
what you want.
Because the Buffer constructor is so powerful, you often see code like this:
```js
// Convert UTF-8 strings to hex
function toHex (str) {
return new Buffer(str).toString('hex')
}
```
***But what happens if `toHex` is called with a `Number` argument?***
### Remote Memory Disclosure
If an attacker can make your program call the `Buffer` constructor with a `Number`
argument, then they can make it allocate uninitialized memory from the node.js process.
This could potentially disclose TLS private keys, user data, or database passwords.
When the `Buffer` constructor is passed a `Number` argument, it returns an
**UNINITIALIZED** block of memory of the specified `size`. When you create a `Buffer` like
this, you **MUST** overwrite the contents before returning it to the user.
From the [node.js docs](https://nodejs.org/api/buffer.html#buffer_new_buffer_size):
> `new Buffer(size)`
>
> - `size` Number
>
> The underlying memory for `Buffer` instances created in this way is not initialized.
> **The contents of a newly created `Buffer` are unknown and could contain sensitive
> data.** Use `buf.fill(0)` to initialize a Buffer to zeroes.
(Emphasis our own.)
Whenever the programmer intended to create an uninitialized `Buffer` you often see code
like this:
```js
var buf = new Buffer(16)
// Immediately overwrite the uninitialized buffer with data from another buffer
for (var i = 0; i < buf.length; i++) {
buf[i] = otherBuf[i]
}
```
### Would this ever be a problem in real code?
Yes. It's surprisingly common to forget to check the type of your variables in a
dynamically-typed language like JavaScript.
Usually the consequences of assuming the wrong type is that your program crashes with an
uncaught exception. But the failure mode for forgetting to check the type of arguments to
the `Buffer` constructor is more catastrophic.
Here's an example of a vulnerable service that takes a JSON payload and converts it to
hex:
```js
// Take a JSON payload {str: "some string"} and convert it to hex
var server = http.createServer(function (req, res) {
var data = ''
req.setEncoding('utf8')
req.on('data', function (chunk) {
data += chunk
})
req.on('end', function () {
var body = JSON.parse(data)
res.end(new Buffer(body.str).toString('hex'))
})
})
server.listen(8080)
```
In this example, an http client just has to send:
```json
{
"str": 1000
}
```
and it will get back 1,000 bytes of uninitialized memory from the server.
This is a very serious bug. It's similar in severity to the
[the Heartbleed bug](http://heartbleed.com/) that allowed disclosure of OpenSSL process
memory by remote attackers.
### Which real-world packages were vulnerable?
#### [`bittorrent-dht`](https://www.npmjs.com/package/bittorrent-dht)
[Mathias Buus](https://github.com/mafintosh) and I
([Feross Aboukhadijeh](http://feross.org/)) found this issue in one of our own packages,
[`bittorrent-dht`](https://www.npmjs.com/package/bittorrent-dht). The bug would allow
anyone on the internet to send a series of messages to a user of `bittorrent-dht` and get
them to reveal 20 bytes at a time of uninitialized memory from the node.js process.
Here's
[the commit](https://github.com/feross/bittorrent-dht/commit/6c7da04025d5633699800a99ec3fbadf70ad35b8)
that fixed it. We released a new fixed version, created a
[Node Security Project disclosure](https://nodesecurity.io/advisories/68), and deprecated all
vulnerable versions on npm so users will get a warning to upgrade to a newer version.
#### [`ws`](https://www.npmjs.com/package/ws)
That got us wondering if there were other vulnerable packages. Sure enough, within a short
period of time, we found the same issue in [`ws`](https://www.npmjs.com/package/ws), the
most popular WebSocket implementation in node.js.
If certain APIs were called with `Number` parameters instead of `String` or `Buffer` as
expected, then uninitialized server memory would be disclosed to the remote peer.
These were the vulnerable methods:
```js
socket.send(number)
socket.ping(number)
socket.pong(number)
```
Here's a vulnerable socket server with some echo functionality:
```js
server.on('connection', function (socket) {
socket.on('message', function (message) {
message = JSON.parse(message)
if (message.type === 'echo') {
socket.send(message.data) // send back the user's message
}
})
})
```
`socket.send(number)` called on the server, will disclose server memory.
Here's [the release](https://github.com/websockets/ws/releases/tag/1.0.1) where the issue
was fixed, with a more detailed explanation. Props to
[Arnout Kazemier](https://github.com/3rd-Eden) for the quick fix. Here's the
[Node Security Project disclosure](https://nodesecurity.io/advisories/67).
### What's the solution?
It's important that node.js offers a fast way to get memory otherwise performance-critical
applications would needlessly get a lot slower.
But we need a better way to *signal our intent* as programmers. **When we want
uninitialized memory, we should request it explicitly.**
Sensitive functionality should not be packed into a developer-friendly API that loosely
accepts many different types. This type of API encourages the lazy practice of passing
variables in without checking the type very carefully.
#### A new API: `Buffer.allocUnsafe(number)`
The functionality of creating buffers with uninitialized memory should be part of another
API. We propose `Buffer.allocUnsafe(number)`. This way, it's not part of an API that
frequently gets user input of all sorts of different types passed into it.
```js
var buf = Buffer.allocUnsafe(16) // careful, uninitialized memory!
// Immediately overwrite the uninitialized buffer with data from another buffer
for (var i = 0; i < buf.length; i++) {
buf[i] = otherBuf[i]
}
```
### How do we fix node.js core?
We sent [a PR to node.js core](https://github.com/nodejs/node/pull/4514) (merged as
`semver-major`) which defends against one case:
```js
var str = 16
new Buffer(str, 'utf8')
```
In this situation, it's implied that the programmer intended the first argument to be a
string, since they passed an encoding as a second argument. Today, node.js will allocate
uninitialized memory in the case of `new Buffer(number, encoding)`, which is probably not
what the programmer intended.
But this is only a partial solution, since if the programmer does `new Buffer(variable)`
(without an `encoding` parameter) there's no way to know what they intended. If `variable`
is sometimes a number, then uninitialized memory will sometimes be returned.
### What's the real long-term fix?
We could deprecate and remove `new Buffer(number)` and use `Buffer.allocUnsafe(number)` when
we need uninitialized memory. But that would break 1000s of packages.
~~We believe the best solution is to:~~
~~1. Change `new Buffer(number)` to return safe, zeroed-out memory~~
~~2. Create a new API for creating uninitialized Buffers. We propose: `Buffer.allocUnsafe(number)`~~
#### Update
We now support adding three new APIs:
- `Buffer.from(value)` - convert from any type to a buffer
- `Buffer.alloc(size)` - create a zero-filled buffer
- `Buffer.allocUnsafe(size)` - create an uninitialized buffer with given size
This solves the core problem that affected `ws` and `bittorrent-dht` which is
`Buffer(variable)` getting tricked into taking a number argument.
This way, existing code continues working and the impact on the npm ecosystem will be
minimal. Over time, npm maintainers can migrate performance-critical code to use
`Buffer.allocUnsafe(number)` instead of `new Buffer(number)`.
### Conclusion
We think there's a serious design issue with the `Buffer` API as it exists today. It
promotes insecure software by putting high-risk functionality into a convenient API
with friendly "developer ergonomics".
This wasn't merely a theoretical exercise because we found the issue in some of the
most popular npm packages.
Fortunately, there's an easy fix that can be applied today. Use `safe-buffer` in place of
`buffer`.
```js
var Buffer = require('safe-buffer').Buffer
```
Eventually, we hope that node.js core can switch to this new, safer behavior. We believe
the impact on the ecosystem would be minimal since it's not a breaking change.
Well-maintained, popular packages would be updated to use `Buffer.alloc` quickly, while
older, insecure packages would magically become safe from this attack vector.
## links
- [Node.js PR: buffer: throw if both length and enc are passed](https://github.com/nodejs/node/pull/4514)
- [Node Security Project disclosure for `ws`](https://nodesecurity.io/advisories/67)
- [Node Security Project disclosure for`bittorrent-dht`](https://nodesecurity.io/advisories/68)
## credit
The original issues in `bittorrent-dht`
([disclosure](https://nodesecurity.io/advisories/68)) and
`ws` ([disclosure](https://nodesecurity.io/advisories/67)) were discovered by
[Mathias Buus](https://github.com/mafintosh) and
[Feross Aboukhadijeh](http://feross.org/).
Thanks to [Adam Baldwin](https://github.com/evilpacket) for helping disclose these issues
and for his work running the [Node Security Project](https://nodesecurity.io/).
Thanks to [John Hiesey](https://github.com/jhiesey) for proofreading this README and
auditing the code.
## license
MIT. Copyright (C) [Feross Aboukhadijeh](http://feross.org)

View File

@ -0,0 +1,187 @@
declare module "safe-buffer" {
export class Buffer {
length: number
write(string: string, offset?: number, length?: number, encoding?: string): number;
toString(encoding?: string, start?: number, end?: number): string;
toJSON(): { type: 'Buffer', data: any[] };
equals(otherBuffer: Buffer): boolean;
compare(otherBuffer: Buffer, targetStart?: number, targetEnd?: number, sourceStart?: number, sourceEnd?: number): number;
copy(targetBuffer: Buffer, targetStart?: number, sourceStart?: number, sourceEnd?: number): number;
slice(start?: number, end?: number): Buffer;
writeUIntLE(value: number, offset: number, byteLength: number, noAssert?: boolean): number;
writeUIntBE(value: number, offset: number, byteLength: number, noAssert?: boolean): number;
writeIntLE(value: number, offset: number, byteLength: number, noAssert?: boolean): number;
writeIntBE(value: number, offset: number, byteLength: number, noAssert?: boolean): number;
readUIntLE(offset: number, byteLength: number, noAssert?: boolean): number;
readUIntBE(offset: number, byteLength: number, noAssert?: boolean): number;
readIntLE(offset: number, byteLength: number, noAssert?: boolean): number;
readIntBE(offset: number, byteLength: number, noAssert?: boolean): number;
readUInt8(offset: number, noAssert?: boolean): number;
readUInt16LE(offset: number, noAssert?: boolean): number;
readUInt16BE(offset: number, noAssert?: boolean): number;
readUInt32LE(offset: number, noAssert?: boolean): number;
readUInt32BE(offset: number, noAssert?: boolean): number;
readInt8(offset: number, noAssert?: boolean): number;
readInt16LE(offset: number, noAssert?: boolean): number;
readInt16BE(offset: number, noAssert?: boolean): number;
readInt32LE(offset: number, noAssert?: boolean): number;
readInt32BE(offset: number, noAssert?: boolean): number;
readFloatLE(offset: number, noAssert?: boolean): number;
readFloatBE(offset: number, noAssert?: boolean): number;
readDoubleLE(offset: number, noAssert?: boolean): number;
readDoubleBE(offset: number, noAssert?: boolean): number;
swap16(): Buffer;
swap32(): Buffer;
swap64(): Buffer;
writeUInt8(value: number, offset: number, noAssert?: boolean): number;
writeUInt16LE(value: number, offset: number, noAssert?: boolean): number;
writeUInt16BE(value: number, offset: number, noAssert?: boolean): number;
writeUInt32LE(value: number, offset: number, noAssert?: boolean): number;
writeUInt32BE(value: number, offset: number, noAssert?: boolean): number;
writeInt8(value: number, offset: number, noAssert?: boolean): number;
writeInt16LE(value: number, offset: number, noAssert?: boolean): number;
writeInt16BE(value: number, offset: number, noAssert?: boolean): number;
writeInt32LE(value: number, offset: number, noAssert?: boolean): number;
writeInt32BE(value: number, offset: number, noAssert?: boolean): number;
writeFloatLE(value: number, offset: number, noAssert?: boolean): number;
writeFloatBE(value: number, offset: number, noAssert?: boolean): number;
writeDoubleLE(value: number, offset: number, noAssert?: boolean): number;
writeDoubleBE(value: number, offset: number, noAssert?: boolean): number;
fill(value: any, offset?: number, end?: number): this;
indexOf(value: string | number | Buffer, byteOffset?: number, encoding?: string): number;
lastIndexOf(value: string | number | Buffer, byteOffset?: number, encoding?: string): number;
includes(value: string | number | Buffer, byteOffset?: number, encoding?: string): boolean;
/**
* Allocates a new buffer containing the given {str}.
*
* @param str String to store in buffer.
* @param encoding encoding to use, optional. Default is 'utf8'
*/
constructor (str: string, encoding?: string);
/**
* Allocates a new buffer of {size} octets.
*
* @param size count of octets to allocate.
*/
constructor (size: number);
/**
* Allocates a new buffer containing the given {array} of octets.
*
* @param array The octets to store.
*/
constructor (array: Uint8Array);
/**
* Produces a Buffer backed by the same allocated memory as
* the given {ArrayBuffer}.
*
*
* @param arrayBuffer The ArrayBuffer with which to share memory.
*/
constructor (arrayBuffer: ArrayBuffer);
/**
* Allocates a new buffer containing the given {array} of octets.
*
* @param array The octets to store.
*/
constructor (array: any[]);
/**
* Copies the passed {buffer} data onto a new {Buffer} instance.
*
* @param buffer The buffer to copy.
*/
constructor (buffer: Buffer);
prototype: Buffer;
/**
* Allocates a new Buffer using an {array} of octets.
*
* @param array
*/
static from(array: any[]): Buffer;
/**
* When passed a reference to the .buffer property of a TypedArray instance,
* the newly created Buffer will share the same allocated memory as the TypedArray.
* The optional {byteOffset} and {length} arguments specify a memory range
* within the {arrayBuffer} that will be shared by the Buffer.
*
* @param arrayBuffer The .buffer property of a TypedArray or a new ArrayBuffer()
* @param byteOffset
* @param length
*/
static from(arrayBuffer: ArrayBuffer, byteOffset?: number, length?: number): Buffer;
/**
* Copies the passed {buffer} data onto a new Buffer instance.
*
* @param buffer
*/
static from(buffer: Buffer): Buffer;
/**
* Creates a new Buffer containing the given JavaScript string {str}.
* If provided, the {encoding} parameter identifies the character encoding.
* If not provided, {encoding} defaults to 'utf8'.
*
* @param str
*/
static from(str: string, encoding?: string): Buffer;
/**
* Returns true if {obj} is a Buffer
*
* @param obj object to test.
*/
static isBuffer(obj: any): obj is Buffer;
/**
* Returns true if {encoding} is a valid encoding argument.
* Valid string encodings in Node 0.12: 'ascii'|'utf8'|'utf16le'|'ucs2'(alias of 'utf16le')|'base64'|'binary'(deprecated)|'hex'
*
* @param encoding string to test.
*/
static isEncoding(encoding: string): boolean;
/**
* Gives the actual byte length of a string. encoding defaults to 'utf8'.
* This is not the same as String.prototype.length since that returns the number of characters in a string.
*
* @param string string to test.
* @param encoding encoding used to evaluate (defaults to 'utf8')
*/
static byteLength(string: string, encoding?: string): number;
/**
* Returns a buffer which is the result of concatenating all the buffers in the list together.
*
* If the list has no items, or if the totalLength is 0, then it returns a zero-length buffer.
* If the list has exactly one item, then the first item of the list is returned.
* If the list has more than one item, then a new Buffer is created.
*
* @param list An array of Buffer objects to concatenate
* @param totalLength Total length of the buffers when concatenated.
* If totalLength is not provided, it is read from the buffers in the list. However, this adds an additional loop to the function, so it is faster to provide the length explicitly.
*/
static concat(list: Buffer[], totalLength?: number): Buffer;
/**
* The same as buf1.compare(buf2).
*/
static compare(buf1: Buffer, buf2: Buffer): number;
/**
* Allocates a new buffer of {size} octets.
*
* @param size count of octets to allocate.
* @param fill if specified, buffer will be initialized by calling buf.fill(fill).
* If parameter is omitted, buffer will be filled with zeros.
* @param encoding encoding used for call to buf.fill while initalizing
*/
static alloc(size: number, fill?: string | Buffer | number, encoding?: string): Buffer;
/**
* Allocates a new buffer of {size} octets, leaving memory not initialized, so the contents
* of the newly created Buffer are unknown and may contain sensitive data.
*
* @param size count of octets to allocate
*/
static allocUnsafe(size: number): Buffer;
/**
* Allocates a new non-pooled buffer of {size} octets, leaving memory not initialized, so the contents
* of the newly created Buffer are unknown and may contain sensitive data.
*
* @param size count of octets to allocate
*/
static allocUnsafeSlow(size: number): Buffer;
}
}

View File

@ -0,0 +1,62 @@
/* eslint-disable node/no-deprecated-api */
var buffer = require('buffer')
var Buffer = buffer.Buffer
// alternative to using Object.keys for old browsers
function copyProps (src, dst) {
for (var key in src) {
dst[key] = src[key]
}
}
if (Buffer.from && Buffer.alloc && Buffer.allocUnsafe && Buffer.allocUnsafeSlow) {
module.exports = buffer
} else {
// Copy properties from require('buffer')
copyProps(buffer, exports)
exports.Buffer = SafeBuffer
}
function SafeBuffer (arg, encodingOrOffset, length) {
return Buffer(arg, encodingOrOffset, length)
}
// Copy static methods from Buffer
copyProps(Buffer, SafeBuffer)
SafeBuffer.from = function (arg, encodingOrOffset, length) {
if (typeof arg === 'number') {
throw new TypeError('Argument must not be a number')
}
return Buffer(arg, encodingOrOffset, length)
}
SafeBuffer.alloc = function (size, fill, encoding) {
if (typeof size !== 'number') {
throw new TypeError('Argument must be a number')
}
var buf = Buffer(size)
if (fill !== undefined) {
if (typeof encoding === 'string') {
buf.fill(fill, encoding)
} else {
buf.fill(fill)
}
} else {
buf.fill(0)
}
return buf
}
SafeBuffer.allocUnsafe = function (size) {
if (typeof size !== 'number') {
throw new TypeError('Argument must be a number')
}
return Buffer(size)
}
SafeBuffer.allocUnsafeSlow = function (size) {
if (typeof size !== 'number') {
throw new TypeError('Argument must be a number')
}
return buffer.SlowBuffer(size)
}

View File

@ -0,0 +1,62 @@
{
"_from": "safe-buffer@~5.1.1",
"_id": "safe-buffer@5.1.2",
"_inBundle": false,
"_integrity": "sha512-Gd2UZBJDkXlY7GbJxfsE8/nvKkUEU1G38c1siN6QP6a9PT9MmHB8GnpscSmMJSoF8LOIrt8ud/wPtojys4G6+g==",
"_location": "/are-we-there-yet/safe-buffer",
"_phantomChildren": {},
"_requested": {
"type": "range",
"registry": true,
"raw": "safe-buffer@~5.1.1",
"name": "safe-buffer",
"escapedName": "safe-buffer",
"rawSpec": "~5.1.1",
"saveSpec": null,
"fetchSpec": "~5.1.1"
},
"_requiredBy": [
"/are-we-there-yet/readable-stream"
],
"_resolved": "https://registry.npmjs.org/safe-buffer/-/safe-buffer-5.1.2.tgz",
"_shasum": "991ec69d296e0313747d59bdfd2b745c35f8828d",
"_spec": "safe-buffer@~5.1.1",
"_where": "C:\\Users\\matia\\Documents\\GitHub\\Musix-V3\\node_modules\\are-we-there-yet\\node_modules\\readable-stream",
"author": {
"name": "Feross Aboukhadijeh",
"email": "feross@feross.org",
"url": "http://feross.org"
},
"bugs": {
"url": "https://github.com/feross/safe-buffer/issues"
},
"bundleDependencies": false,
"deprecated": false,
"description": "Safer Node.js Buffer API",
"devDependencies": {
"standard": "*",
"tape": "^4.0.0"
},
"homepage": "https://github.com/feross/safe-buffer",
"keywords": [
"buffer",
"buffer allocate",
"node security",
"safe",
"safe-buffer",
"security",
"uninitialized"
],
"license": "MIT",
"main": "index.js",
"name": "safe-buffer",
"repository": {
"type": "git",
"url": "git://github.com/feross/safe-buffer.git"
},
"scripts": {
"test": "standard && tape test/*.js"
},
"types": "index.d.ts",
"version": "5.1.2"
}

69
node_modules/are-we-there-yet/package.json generated vendored Normal file
View File

@ -0,0 +1,69 @@
{
"_from": "are-we-there-yet@~1.1.2",
"_id": "are-we-there-yet@1.1.5",
"_inBundle": false,
"_integrity": "sha512-5hYdAkZlcG8tOLujVDTgCT+uPX0VnpAH28gWsLfzpXYm7wP6mp5Q/gYyR7YQ0cKVJcXJnl3j2kpBan13PtQf6w==",
"_location": "/are-we-there-yet",
"_phantomChildren": {
"core-util-is": "1.0.2",
"inherits": "2.0.4",
"process-nextick-args": "2.0.1",
"string_decoder": "1.1.1",
"util-deprecate": "1.0.2"
},
"_requested": {
"type": "range",
"registry": true,
"raw": "are-we-there-yet@~1.1.2",
"name": "are-we-there-yet",
"escapedName": "are-we-there-yet",
"rawSpec": "~1.1.2",
"saveSpec": null,
"fetchSpec": "~1.1.2"
},
"_requiredBy": [
"/npmlog"
],
"_resolved": "https://registry.npmjs.org/are-we-there-yet/-/are-we-there-yet-1.1.5.tgz",
"_shasum": "4b35c2944f062a8bfcda66410760350fe9ddfc21",
"_spec": "are-we-there-yet@~1.1.2",
"_where": "C:\\Users\\matia\\Documents\\GitHub\\Musix-V3\\node_modules\\npmlog",
"author": {
"name": "Rebecca Turner",
"url": "http://re-becca.org"
},
"bugs": {
"url": "https://github.com/iarna/are-we-there-yet/issues"
},
"bundleDependencies": false,
"dependencies": {
"delegates": "^1.0.0",
"readable-stream": "^2.0.6"
},
"deprecated": false,
"description": "Keep track of the overall completion of many disparate processes",
"devDependencies": {
"standard": "^11.0.1",
"tap": "^12.0.1"
},
"files": [
"index.js",
"tracker-base.js",
"tracker-group.js",
"tracker-stream.js",
"tracker.js",
"CHANGES.md"
],
"homepage": "https://github.com/iarna/are-we-there-yet",
"license": "ISC",
"main": "index.js",
"name": "are-we-there-yet",
"repository": {
"type": "git",
"url": "git+https://github.com/iarna/are-we-there-yet.git"
},
"scripts": {
"test": "standard && tap test/*.js"
},
"version": "1.1.5"
}

11
node_modules/are-we-there-yet/tracker-base.js generated vendored Normal file
View File

@ -0,0 +1,11 @@
'use strict'
var EventEmitter = require('events').EventEmitter
var util = require('util')
var trackerId = 0
var TrackerBase = module.exports = function (name) {
EventEmitter.call(this)
this.id = ++trackerId
this.name = name
}
util.inherits(TrackerBase, EventEmitter)

107
node_modules/are-we-there-yet/tracker-group.js generated vendored Normal file
View File

@ -0,0 +1,107 @@
'use strict'
var util = require('util')
var TrackerBase = require('./tracker-base.js')
var Tracker = require('./tracker.js')
var TrackerStream = require('./tracker-stream.js')
var TrackerGroup = module.exports = function (name) {
TrackerBase.call(this, name)
this.parentGroup = null
this.trackers = []
this.completion = {}
this.weight = {}
this.totalWeight = 0
this.finished = false
this.bubbleChange = bubbleChange(this)
}
util.inherits(TrackerGroup, TrackerBase)
function bubbleChange (trackerGroup) {
return function (name, completed, tracker) {
trackerGroup.completion[tracker.id] = completed
if (trackerGroup.finished) return
trackerGroup.emit('change', name || trackerGroup.name, trackerGroup.completed(), trackerGroup)
}
}
TrackerGroup.prototype.nameInTree = function () {
var names = []
var from = this
while (from) {
names.unshift(from.name)
from = from.parentGroup
}
return names.join('/')
}
TrackerGroup.prototype.addUnit = function (unit, weight) {
if (unit.addUnit) {
var toTest = this
while (toTest) {
if (unit === toTest) {
throw new Error(
'Attempted to add tracker group ' +
unit.name + ' to tree that already includes it ' +
this.nameInTree(this))
}
toTest = toTest.parentGroup
}
unit.parentGroup = this
}
this.weight[unit.id] = weight || 1
this.totalWeight += this.weight[unit.id]
this.trackers.push(unit)
this.completion[unit.id] = unit.completed()
unit.on('change', this.bubbleChange)
if (!this.finished) this.emit('change', unit.name, this.completion[unit.id], unit)
return unit
}
TrackerGroup.prototype.completed = function () {
if (this.trackers.length === 0) return 0
var valPerWeight = 1 / this.totalWeight
var completed = 0
for (var ii = 0; ii < this.trackers.length; ii++) {
var trackerId = this.trackers[ii].id
completed += valPerWeight * this.weight[trackerId] * this.completion[trackerId]
}
return completed
}
TrackerGroup.prototype.newGroup = function (name, weight) {
return this.addUnit(new TrackerGroup(name), weight)
}
TrackerGroup.prototype.newItem = function (name, todo, weight) {
return this.addUnit(new Tracker(name, todo), weight)
}
TrackerGroup.prototype.newStream = function (name, todo, weight) {
return this.addUnit(new TrackerStream(name, todo), weight)
}
TrackerGroup.prototype.finish = function () {
this.finished = true
if (!this.trackers.length) this.addUnit(new Tracker(), 1, true)
for (var ii = 0; ii < this.trackers.length; ii++) {
var tracker = this.trackers[ii]
tracker.finish()
tracker.removeListener('change', this.bubbleChange)
}
this.emit('change', this.name, 1, this)
}
var buffer = ' '
TrackerGroup.prototype.debug = function (depth) {
depth = depth || 0
var indent = depth ? buffer.substr(0, depth) : ''
var output = indent + (this.name || 'top') + ': ' + this.completed() + '\n'
this.trackers.forEach(function (tracker) {
if (tracker instanceof TrackerGroup) {
output += tracker.debug(depth + 1)
} else {
output += indent + ' ' + tracker.name + ': ' + tracker.completed() + '\n'
}
})
return output
}

36
node_modules/are-we-there-yet/tracker-stream.js generated vendored Normal file
View File

@ -0,0 +1,36 @@
'use strict'
var util = require('util')
var stream = require('readable-stream')
var delegate = require('delegates')
var Tracker = require('./tracker.js')
var TrackerStream = module.exports = function (name, size, options) {
stream.Transform.call(this, options)
this.tracker = new Tracker(name, size)
this.name = name
this.id = this.tracker.id
this.tracker.on('change', delegateChange(this))
}
util.inherits(TrackerStream, stream.Transform)
function delegateChange (trackerStream) {
return function (name, completion, tracker) {
trackerStream.emit('change', name, completion, trackerStream)
}
}
TrackerStream.prototype._transform = function (data, encoding, cb) {
this.tracker.completeWork(data.length ? data.length : 1)
this.push(data)
cb()
}
TrackerStream.prototype._flush = function (cb) {
this.tracker.finish()
cb()
}
delegate(TrackerStream.prototype, 'tracker')
.method('completed')
.method('addWork')
.method('finish')

30
node_modules/are-we-there-yet/tracker.js generated vendored Normal file
View File

@ -0,0 +1,30 @@
'use strict'
var util = require('util')
var TrackerBase = require('./tracker-base.js')
var Tracker = module.exports = function (name, todo) {
TrackerBase.call(this, name)
this.workDone = 0
this.workTodo = todo || 0
}
util.inherits(Tracker, TrackerBase)
Tracker.prototype.completed = function () {
return this.workTodo === 0 ? 0 : this.workDone / this.workTodo
}
Tracker.prototype.addWork = function (work) {
this.workTodo += work
this.emit('change', this.name, this.completed(), this)
}
Tracker.prototype.completeWork = function (work) {
this.workDone += work
if (this.workDone > this.workTodo) this.workDone = this.workTodo
this.emit('change', this.name, this.completed(), this)
}
Tracker.prototype.finish = function () {
this.workTodo = this.workDone = 1
this.emit('change', this.name, 1, this)
}